

complex world CLEAR SOLUTIONS™

AGENDA

Welcome, Introductions, & Meeting Purpose (10 min)

Project Overview

Objectives
Project Phases
Recommendations
(30 min)

Open Discussion, Q&A (80 min)

INTRODUCTIONS

- Patti McCall, Presenter
 - Hydrogeologist with Tetra Tech
 - 18 years experience
- Brian Steglitz, Presenter
 - Water Treatment Services Manager, City of Ann Arbor
 - 22 years with City of Ann Arbor
- Kayla Coleman, Facilitator
 - Community Engagement Specialist
 - 9 years with City of Ann Arbor

WHY ARE WE HERE?

 Ensure the safety of the public drinking water supply through locating and installing sentinel monitoring wells

DISCUSSION GUIDELINES

- > Be recognized to talk.
- Speak loudly and clearly so everyone can hear.
- One speaker and one point at a time.
- > Allow everyone a chance to speak before a repeat speaker.
- ➤ Be respectful of other ideas and perspectives.

DEFINITIONS

- 1,4-Dioxane
 - Groundwater contaminant
 - Industrial solvent disposal 1966 to 1986
- Gelman Plume
 - Manufacturer of medical and environmental filters
 - 850,000 pounds of 1,4-dioxane between 1966 and 1986
- Sentinel well
 - Monitoring well strategically located
 - Early warning for contamination migrating toward Barton Pond

WHAT'S NOT ON TONIGHT'S AGENDA:

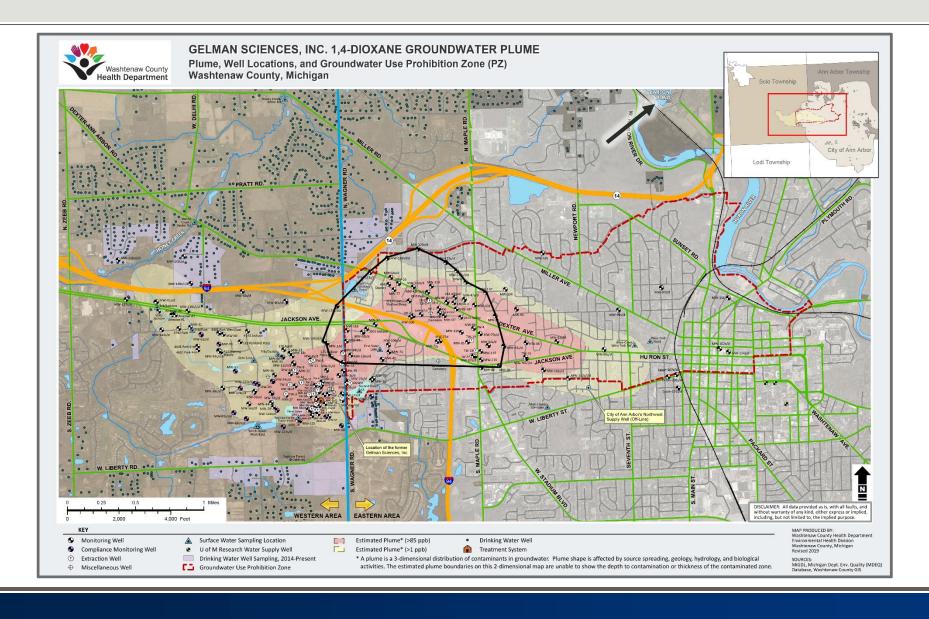
Consent Judgment

Near-surface Groundwater and Basement Sampling

Superfund Discussion

Impacts to Scio Township

OVERVIEW


- Background Information
- Project Phases
- Recommendations
- Next Steps
- Questions

BACKGROUND INFORMATION

PROJECT PHASES

PHASE ONE

July

Public Engagement

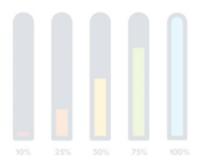
3-D Modeling

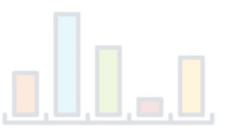
Independent Review

Sample Collection

Well Location Recommendations

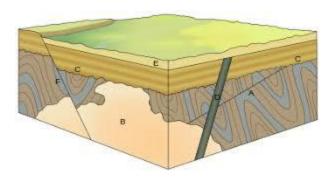
Public Engagement





PHASE 1: Data Collection

- Determine spatial parameters
- Monitoring well network
- Geology
- Elevation data
 - Wells
 - Surface topography
- 1,4-dioxane concentration data
- Stakeholder engagement for data
 - Roger Rayle Coalition for Action on Remediation of Dioxane (CARD); Scio Residents for Safe Water (SRSW)
 - Michigan Department of Environment, Great Lakes and Energy (EGLE)
 - Fleis and Vanderbrink



PHASE 2: 3-Dimensional Model

- 3-Dimensional Model Features
 - ✓ Deterministic
 - ✓ Snapshot in time
 - ✓ Cross-sectional views
 - ✓ Kriging

PHASE 2: 3-Dimensional Model

- Model restraints
 - Geology is generalized by kriging
 - Large gaps in physical space
 - No data to the north to extrapolate

PHASE 2: 3-Dimensional Model

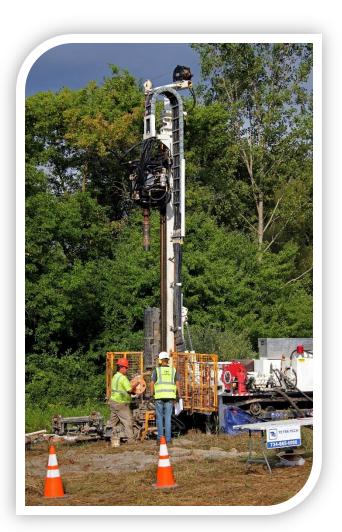
PHASE 3: Independent Review

- Dr. Larry Lemke Hydrogeologist and Environmental Engineer
- Current Department Chair of Earth & Atmospheric
 Sciences Institute for Great Lakes Research at Central
 Michigan University
- Institutional Knowledge
 - Modeling
 - Graduate Students

PHASE 4: Sample Collection – NOT COMPLETED

- Split sample request for 10 monitoring wells
 - MW-54d
 - MW-120s/d
 - MW-121s
 - MW-123s/d
 - MW-129i/d
 - MW-130i/d
- Method 522 Analysis low level
- Did not impact ability to determine well locations

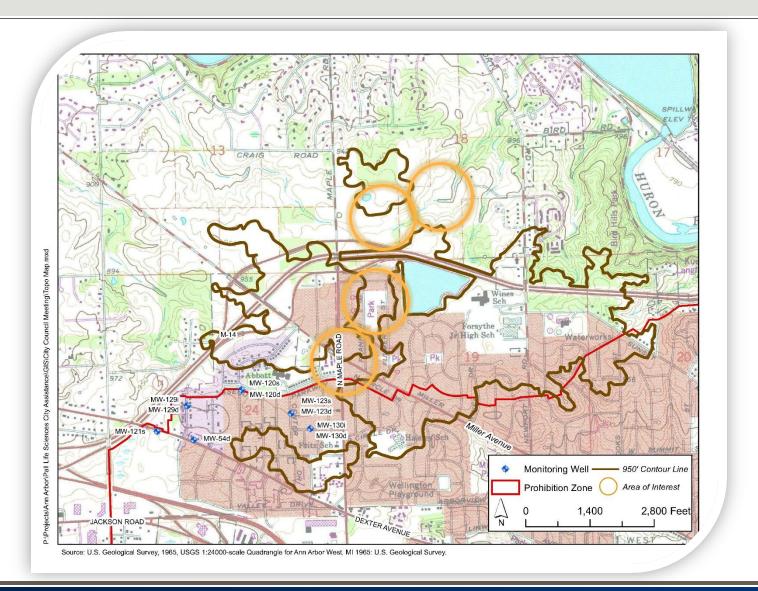
PHASE 5: Well Location Recommendations


- Considerations for well locations
 - Geology
 - Groundwater flow
 - Surface topography
 - 1,4-dioxane concentrations

PHASE 5: Well Location Recommendations

- Final locations will consider
 - City right-of-way
 - City owned property
 - Adaptability based on information during installation

PHASE 5: RECOMMENDATIONS



- Installation of 3 or 4 Nested monitoring well sets
- Elevation data
- Static water levels
- Sampling with lower detection
 - Current detection: 1 ppb
 - Method 522: 0.07 ppb
- Complete aquifer analyses
 - Speed limit
 - Gradient
 - Direction
- Time Estimates

PHASE 5: Well Location Recommendations

PHASE 6: Public Engagement

- City of Ann Arbor Water Treatment Plant monthly submittals of 2019 Timeline: Monitoring Well Location Study for the Gelman Plume
- CARD monthly meeting attendance
- CARD Quarterly meeting presentation November 5th
- EGLE communication

NEXT STEPS

- Present recommendations to City Council
- Cost for model development and monitoring well location recommendations: \$29K
- Estimated cost for well installations: \$400K
- Schedule: Construct wells in 2021 2022

QUESTIONS

